Inverse Trigonometric Functions Question 15

Question: $ {{\tan }^{-1}}\frac{1-x^{2}}{2x}+{{\cos }^{-1}}\frac{1-x^{2}}{1+x^{2}}= $

Options:

A) $ \frac{\pi }{4} $

B) $ \frac{\pi }{2} $

C) $ \pi $

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

Putting $ x=\tan \theta $

$ {{\tan }^{-1}}\frac{1-x^{2}}{2x}+{{\cos }^{-1}}\frac{1-x^{2}}{1+x^{2}} $

$ ={{\tan }^{-1}}( \frac{1-{{\tan }^{2}}\theta }{2\tan \theta } )+{{\cos }^{-1}}( \frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } ) $

$ ={{\tan }^{-1}}(\cot 2\theta )+{{\cos }^{-1}}(\cos 2\theta ) $

$ =\frac{\pi }{2}-2\theta +2\theta =\frac{\pi }{2} $ .