Inverse Trigonometric Functions Question 153

Question: During $ \cos ({{\tan }^{-1}}x)= $

[MP PET 1988; MNR 1981]

Options:

A) $ \sqrt{1+x^{2}} $

B) $ \frac{1}{\sqrt{1+x^{2}}} $

C) $ 1+x^{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ \theta ={{\tan }^{-1}}x\Rightarrow x=\tan \theta $

$ \therefore \cos \theta =\frac{1}{\sqrt{1+{{\tan }^{2}}\theta }}=\frac{1}{\sqrt{1+x^{2}}} $ Hence $ \cos \theta =\cos ({{\tan }^{-1}}x)=\frac{1}{\sqrt{1+x^{2}}} $ .