Inverse Trigonometric Functions Question 156

Question: $ {{\tan }^{-1}}[ \frac{\cos x}{1+\sin x} ]= $

Options:

A) $ \frac{\pi }{4}-\frac{x}{2} $

B) $ \frac{\pi }{4}+\frac{x}{2} $

C) $ \frac{x}{2} $

D) $ \frac{\pi }{4}-x $

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{\tan }^{-1}}[ \frac{\cos x}{1+\sin x} ]={{\tan }^{-1}}[ \frac{\sin (\pi /2-x)}{1+\cos (\pi /2-x)} ] $

$ ={{\tan }^{-1}}[ \frac{2\sin (\pi /4-x/2)\cos (\pi /4-x/2)}{2{{\cos }^{2}}(\pi /4-x/2)} ] $

$ ={{\tan }^{-1}}\tan ( \frac{\pi }{4}-\frac{x}{2} )=\frac{\pi }{4}-\frac{x}{2} $ .