Inverse Trigonometric Functions Question 157

Question: If $ {{\cos }^{-1}}\sqrt{p}+{{\cos }^{-1}}\sqrt{1-p}+{{\cos }^{-1}}\sqrt{1-q}=\frac{3\pi }{4} $ then the value of q is equal to

Options:

A) 1

B) $ \frac{1}{\sqrt{2}} $

C) $ \frac{1}{3} $

D) $ \frac{1}{2} $

Show Answer

Answer:

Correct Answer: D

Let $ {{\cos }^{-1}}\sqrt{p}+{{\cos }^{-1}}\sqrt{1-p} $

$ +{{\cos }^{-1}}\sqrt{1-q}=\frac{3\pi }{4} $ .. (i) Let $ a={{\cos }^{-1}}\sqrt{p}b={{\cos }^{-1}}\sqrt{1-p} $ and $ c={{\cos }^{-1}}\sqrt{1-q} $

$ \Rightarrow \cos a=\sqrt{p},\cos b=\sqrt{1-p},\cos c=\sqrt{1-q} $

$ \Rightarrow {{\cos }^{2}}a=p,{{\cos }^{2}}b=1-p,{{\cos }^{2}}c=1-q $ Now, $ {{\sin }^{2}}a=1-{{\cos }^{2}}a=1-p $

$ \Rightarrow \sin a=\sqrt{1-p}, $

$ {{\sin }^{2}}b=1-{{\cos }^{2}}b=1-1+p\Rightarrow \sin b=\sqrt{p} $

$ {{\sin }^{2}}c=1-{{\cos }^{2}}c=1-1+q=q\Rightarrow \sin c=\sqrt{q} $

$ \therefore $ equation (i) can be written as $ a+b+c=\frac{3\pi }{4}\Rightarrow a+b=\frac{3\pi }{4}-c $

Take cos on each side, we get $ \cos (a+b)=cos( \frac{3\pi }{4}-c ) $

$ \Rightarrow \cos a\cos b-\sin a\sin b $

$ =\cos { \pi -( \frac{\pi }{4}+c ) }=-\cos ( \frac{\pi }{4}+c ) $ Put values of $ \cos a,cosb $ and $ \sin a,\sin b, $ we get $ \sqrt{p}.\sqrt{1-p}-\sqrt{1-p}\sqrt{p} $

$ =-( \frac{1}{\sqrt{2}}\sqrt{1-q}-\frac{1}{\sqrt{2}}\sqrt{q} ) $

$ \Rightarrow 0=\sqrt{1-q}-\sqrt{q}\Rightarrow \sqrt{1-q}=\sqrt{q} $ Squaring on both side; $ \Rightarrow 1-q=q $

$ \Rightarrow 1=2q\Rightarrow q=\frac{1}{2} $