Inverse Trigonometric Functions Question 162

Question: If $ x $ takes non-positive permissible value, then $ {{\sin }^{-1}}x $ =

Options:

A) $ {{\cos }^{-1}}\sqrt{1-x^{2}} $

B) $ -{{\cos }^{-1}}\sqrt{1-x^{2}} $

C) $ {{\cos }^{-1}}\sqrt{x^{2}-1} $

D) $ \pi -{{\cos }^{-1}}\sqrt{1-x^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ {{\sin }^{-1}}x=y. $ Then $ x=\sin y $

Since $ -1\le x\le 0, $

Therefore $ \frac{-\pi }{2}\le {{\sin }^{-1}}x\le 0 $

and so $ \frac{-\pi }{2}\le y\le 0 $ We have $ \cos y=\sqrt{1-{{\sin }^{2}}y} $

$ \Rightarrow \cos y=\sqrt{1-x^{2}} $ , for $ 0\le y\le \pi $ -. .(i)

Now $ -\frac{\pi }{2}\le y\le 0\Rightarrow \frac{\pi }{2}\ge -y\ge 0 $

$ \Rightarrow \cos ( -y )=\sqrt{1-x^{2}} $ {from (i)}
$ \Rightarrow -y={{\cos }^{-1}}\sqrt{1-x^{2}}\Rightarrow y=-{{\cos }^{-1}}\sqrt{1-x^{2}} $ .