Inverse Trigonometric Functions Question 165

Question: $ {{\cos }^{-1}}( \frac{15}{17} )+2{{\tan }^{-1}}( \frac{1}{5} )= $

[EAMCET 1981]

Options:

A) $ \frac{\pi }{2} $

B) $ {{\cos }^{-1}}( \frac{171}{221} ) $

C) $ \frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\cos }^{-1}}( \frac{15}{17} )+2{{\tan }^{-1}}( \frac{1}{5} ) $

$ ={{\cos }^{-1}}( \frac{15}{17} )+{{\cos }^{-1}}( \frac{1-1/25}{1+1/25} ) $

$ ={{\cos }^{-1}}( \frac{15}{17} )+{{\cos }^{-1}}( \frac{12}{13} ) $

$ ={{\cos }^{-1}}( \frac{15}{17}\times \frac{12}{13}-\sqrt{1-{{( \frac{15}{17} )}^{2}}}\sqrt{1-{{( \frac{12}{13} )}^{2}}} ) $

$ ={{\cos }^{-1}}( \frac{140}{221} ) $ .