Inverse Trigonometric Functions Question 167

Question: $ \tan [ \frac{\pi }{4}+\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} ]+\tan [ \frac{\pi }{4}-\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} ]= $

[MP PET 1999]

Options:

A) $ \frac{2a}{b} $

B) $ \frac{2b}{a} $

C) $ \frac{a}{b} $

D) $ \frac{b}{a} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \tan [ \frac{\pi }{4}+\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} ]+\tan [ \frac{\pi }{4}-\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} ] $

Let $ \frac{1}{2}{{\cos }^{-1}}\frac{a}{b}=\theta \Rightarrow \cos 2\theta =\frac{a}{b} $

Thus, $ \tan [ \frac{\pi }{4}+\theta ]+\tan [ \frac{\pi }{4}-\theta ] $ = $ \frac{1+\tan \theta }{1-\tan \theta }+\frac{1-\tan \theta }{1+\tan \theta }=\frac{{{(1+\tan \theta )}^{2}}+{{(1-\tan \theta )}^{2}}}{(1-{{\tan }^{2}}\theta )} $

= $ \frac{1+{{\tan }^{2}}\theta +2\tan \theta +1+{{\tan }^{2}}\theta -2\tan \theta }{(1+{{\tan }^{2}}\theta )} $

= $ \frac{2(1+{{\tan }^{2}}\theta )}{1-{{\tan }^{2}}\theta }=2\sec 2\theta =\frac{2}{\cos 2\theta } $

= $ \frac{2}{a/b}=\frac{2b}{a} $ .