Inverse Trigonometric Functions Question 17

Question: If $ u={{\cot }^{-1}}\sqrt{\tan \alpha }-{{\tan }^{-1}}\sqrt{\tan \alpha }, $ then $ \tan ( \frac{\pi }{4}-\frac{u}{2} ) $ is equal to

Options:

A) $ \sqrt{\tan \alpha } $

B) $ \sqrt{\cot \alpha } $

C) $ \tan \alpha $

D) $ \cot \alpha $

Show Answer

Answer:

Correct Answer: A

Let $ \sqrt{\tan \alpha }=\tan x, $ Then $ u={{\cot }^{-1}}(tanx)-ta{n^{-1}}(tanx) $

$ =\frac{\pi }{2}-x-x=\frac{\pi }{2}-2x $

$ \Rightarrow 2x=\frac{\pi }{2}-u\Rightarrow x=\frac{\pi }{4}-\frac{u}{2} $

$ \Rightarrow \tan x=\tan ( \frac{\pi }{4}-\frac{u}{2} )\Rightarrow \sqrt{\tan \alpha }=\tan ( \frac{\pi }{4}-\frac{u}{2} ) $