Inverse Trigonometric Functions Question 172

Question: If $ {{\sin }^{-1}}( \frac{2a}{1+a^{2}} )+{{\sin }^{-1}}( \frac{2b}{1+b^{2}} )=2{{\tan }^{-1}}x, $ then $ x= $

[MNR 1984; UPSEAT 1999; Pb. CET 2004]

Options:

A) $ \frac{a-b}{1+ab} $

B) $ \frac{b}{1+ab} $

C) $ \frac{b}{1-ab} $

D) $ \frac{a+b}{1-ab} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\sin }^{-1}}( \frac{2a}{1+a^{2}} )+{{\sin }^{-1}}( \frac{2b}{1+b^{2}} )=2{{\tan }^{-1}}x $ Putting $ a=\tan \theta $ and $ b=\tan \varphi $ .

So, $ {{\sin }^{-1}}( \frac{2\tan \theta }{1+{{\tan }^{2}}\theta } )+{{\sin }^{-1}}( \frac{2\tan \varphi }{1+{{\tan }^{2}}\varphi } )=2{{\tan }^{-1}}x $

Therefore $ {{\sin }^{-1}}\sin (2\theta )+{{\sin }^{-1}}\sin (2\varphi )=2{{\tan }^{-1}}x $

Therefore $ 2(\theta +\varphi )=2{{\tan }^{-1}}x $ Hence $ x=\tan (\theta +\varphi ) $

Therefore $ x=\frac{\tan \theta +\tan \varphi }{1-\tan \theta \tan \varphi } $ Substituting these values, we get $ x=\frac{a+b}{1-ab} $ .