Inverse Trigonometric Functions Question 173

Question: The solution set of the equation $ {{\sin }^{-1}}x=2{{\tan }^{-1}}x $ is

[AMU 2002]

Options:

A) {1, 2}

B) {-1, 2}

C) {-1, 1, 0}

D) {1, 1/2, 0}

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\sin }^{-1}}x=2{{\tan }^{-1}}x $

Therefore $ {{\sin }^{-1}}x={{\sin }^{-1}}\frac{2x}{1+x^{2}} $

$ \Rightarrow \frac{2x}{1+x^{2}}=x $

Therefore $ x^{3}-x=0 $

Therefore $ x(x+1)(x-1)=0 $

Therefore $ x={ -1,1,0 } $ .