Inverse Trigonometric Functions Question 177

Question: If $ {{\sin }^{-1}}\frac{x}{5}+cose{c^{-1}}( \frac{5}{4} )=\frac{\pi }{2}, $ then $ x= $

[EAMCET 1983; Karnataka CET 2004]

Options:

A) 4

B) 5

C) 1

D) 3

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\sin }^{-1}}\frac{x}{5}+cose{c^{-1}}\frac{5}{4}=\frac{\pi }{2}\Rightarrow {{\sin }^{-1}}\frac{x}{5}=\frac{\pi }{2}-cose{c^{-1}}\frac{5}{4} $

Therefore $ {{\sin }^{-1}}\frac{x}{5}=\frac{\pi }{2}-{{\sin }^{-1}}\frac{4}{5} $

Therefore $ {{\sin }^{-1}}\frac{x}{5}={{\cos }^{-1}}\frac{4}{5} $

Therefore $ {{\sin }^{-1}}( \frac{x}{5} )={{\sin }^{-1}}\frac{3}{5} $

Therefore $ x=3 $ .