Inverse Trigonometric Functions Question 178

Question: $ \sin [{{\cot }^{-1}}(\cos {{\tan }^{-1}}x)] $ =

Options:

A) $ \frac{x}{\sqrt{x^{2}+2}} $

B) $ \frac{x}{\sqrt{x^{2}+1}} $

C) $ \frac{1}{\sqrt{x^{2}+2}} $

D) $ \sqrt{\frac{x^{2}+1}{x^{2}+2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sin [{{\cot }^{-1}}(\cos {{\tan }^{-1}}x)] $

$ =\sin [ {{\cot }^{-1}}( \cos {{\cos }^{-1}}\frac{1}{\sqrt{1+x^{2}}} ) ] $

$ =\sin [ {{\cot }^{-1}}\frac{1}{\sqrt{1+x^{2}}} ]=\sin [ {{\sin }^{-1}}\sqrt{\frac{1+x^{2}}{2+x^{2}}} ] $

$ =\sqrt{\frac{1+x^{2}}{2+x^{2}}} $ .