Inverse Trigonometric Functions Question 18

Question: If $ 2{{\tan }^{-1}}(\cos x)={{\tan }^{-1}}(2\text{cosec }x), $ then x =

Options:

A) $ \frac{3\pi }{4} $

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have 2 $ {{\tan }^{-1}}(\cos x)={{\tan }^{-1}}(2\cos ecx) $

Therefore $ {{\tan }^{-1}}( \frac{2\cos x}{1-{{\cos }^{2}}x} ) $ = $ {{\tan }^{-1}}(2\text{cosec }x) $

$ \frac{2\cos x}{{{\sin }^{2}}x}=2cosecx\Rightarrow 2\cos x=2\sin x $

Or $ \sin x=\cos x $

$ \Rightarrow x=\frac{\pi }{4} $ .