Inverse Trigonometric Functions Question 180

Question: If $ \sin ({{\cot }^{-1}}(x+1)=\cos ({{\tan }^{-1}}x) $ , then x =

[IIT Screening 2004]

Options:

A) $ -\frac{1}{2} $

B) $ \frac{1}{2} $

C) 0

D) $ \frac{9}{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \sin [{{\cot }^{-1}}(x+1)]=\sin ( {{\sin }^{-1}}\frac{1}{\sqrt{x^{2}+2x+2}} ) $

$ =\frac{1}{\sqrt{x^{2}+2x+2}} $

$ \cos ({{\tan }^{-1}}x)=\cos ( {{\cos }^{-1}}\frac{1}{\sqrt{1+x^{2}}} )=\frac{1}{\sqrt{1+x^{2}}} $ Thus, $ \frac{1}{\sqrt{x^{2}+2x+2}}=\frac{1}{\sqrt{1+x^{2}}} $

$ \Rightarrow x^{2}+2x+2=1+x^{2} $

$ \Rightarrow $ $ x=-\frac{1}{2} $ .