Inverse Trigonometric Functions Question 187

Question: $ \tan [ {{\cos }^{-1}}\frac{4}{5}+{{\tan }^{-1}}\frac{2}{3} ] $ =

[IIT 1983; EAMCET 1988; MP PET 1990; MNR 1992]

Options:

A) 6/17

B) 17/6

C) 7/16

D) 16/7

Show Answer

Answer:

Correct Answer: B

Solution:

$ \tan [ {{\cos }^{-1}}\frac{4}{5}+{{\tan }^{-1}}\frac{2}{3} ] $

$ =\tan [ {{\tan }^{-1}}\frac{\sqrt{( 1-\frac{16}{25} )}}{\frac{4}{5}}+{{\tan }^{-1}}\frac{2}{3} ] $

$ =\tan [ {{\tan }^{-1}}( \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4}.\frac{2}{3}} ) ]=\tan .{{\tan }^{-1}}\frac{17}{6}=\frac{17}{6} $ .