Inverse Trigonometric Functions Question 188

Question: $ {{\sin }^{-1}}[ x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^{2}} ]= $

Options:

A) $ {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} $

B) $ {{\sin }^{-1}}x-{{\sin }^{-1}}\sqrt{x} $

C) $ {{\sin }^{-1}}\sqrt{x}-{{\sin }^{-1}}x $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ x=\sin \theta $ and $ \sqrt{x}=\sin \varphi $ Hence $ {{\sin }^{-1}}(x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^{2}}) $

$ ={{\sin }^{-1}}(\sin \theta \sqrt{1-{{\sin }^{2}}\varphi }-\sin \varphi \sqrt{1-{{\sin }^{2}}\theta }) $

$ ={{\sin }^{-1}}(\sin \theta \cos \varphi -\sin \varphi \cos \theta )={{\sin }^{-1}}\sin (\theta -\varphi ) $

$ =\theta -\varphi ={{\sin }^{-1}}(x)-{{\sin }^{-1}}(\sqrt{x}) $ .