Inverse Trigonometric Functions Question 191

Question: If $ {{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi $ , then

[Roorkee 1994]

Options:

A) $ x^{2}+y^{2}+z^{2}+xyz=0 $

B) $ x^{2}+y^{2}+z^{2}+2xyz=0 $

C) $ x^{2}+y^{2}+z^{2}+xyz=1 $

D) $ x^{2}+y^{2}+z^{2}+2xyz=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

Given that $ {{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi $

$ \Rightarrow {{\cos }^{-1}}(x)+{{\cos }^{-1}}(y)+{{\cos }^{-1}}(z)={{\cos }^{-1}}(-1) $

$ \Rightarrow {{\cos }^{-1}}(x)+{{\cos }^{-1}}(y)={{\cos }^{-1}}(-1)-{{\cos }^{-1}}(z) $

$ \Rightarrow {{\cos }^{-1}}(xy-\sqrt{1-x^{2}}\sqrt{1-y^{2})}={{\cos }^{-1}}{ (-1)(z) } $

$ \Rightarrow xy-\sqrt{(1-x^{2})(1-y^{2})}=-z $

$ \Rightarrow (xy+z)=\sqrt{(1-x^{2})(1-y^{2})} $

Squaring both sides we get $ x^{2}+y^{2}+z^{2}+2xyz=1 $ .

Trick: Put $ x=y=z=\frac{1}{2}, $ so that $ {{\cos }^{-1}}\frac{1}{2}+{{\cos }^{-1}}\frac{1}{2}+{{\cos }^{-1}}\frac{1}{2}=\pi $

Obviously (d) holds for these values of x, y, z.