Inverse Trigonometric Functions Question 192

Question: A solution of the equation $ {{\tan }^{-1}}(1+x) $ $ +{{\tan }^{-1}}(1-x) $$ =\frac{\pi }{2} $ is

[Karnataka CET 1993]

Options:

A) $ x=1 $

B) $ x=-1 $

C) $ x=0 $

D) $ x=\pi $

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\tan }^{-1}}(1+x)+{{\tan }^{-1}}(1-x)=\frac{\pi }{2} $

Therefore $ {{\tan }^{-1}}(1+x)=\frac{\pi }{2}-{{\tan }^{-1}}(1-x) $

Therefore $ {{\tan }^{-1}}(1+x)={{\cot }^{-1}}(1-x) $

Therefore $ {{\tan }^{-1}}(1+x)={{\tan }^{-1}}( \frac{1}{1-x} ) $

Therefore $ 1+x=\frac{1}{1-x}\Rightarrow 1-x^{2}=1\Rightarrow x=0 $ .