Inverse Trigonometric Functions Question 193

Question: If $ {{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}A, $ then A =

[MP PET 1988]

Options:

A) $ x-y $

B) $ x+y $

C) $ \frac{x-y}{1+xy} $

D) $ \frac{x+y}{1-xy} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given that $ {{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}A $

$ \Rightarrow {{\tan }^{-1}}( \frac{x-y}{1+xy} )={{\tan }^{-1}}A $ . Hence $ A=\frac{x-y}{1+xy} $ .