Inverse Trigonometric Functions Question 193
Question: If $ {{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}A, $ then A =
[MP PET 1988]
Options:
A) $ x-y $
B) $ x+y $
C) $ \frac{x-y}{1+xy} $
D) $ \frac{x+y}{1-xy} $
Show Answer
Answer:
Correct Answer: C
Solution:
Given that $ {{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}A $
$ \Rightarrow {{\tan }^{-1}}( \frac{x-y}{1+xy} )={{\tan }^{-1}}A $ . Hence $ A=\frac{x-y}{1+xy} $ .