Inverse Trigonometric Functions Question 194

Question: If $ {{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\frac{\pi }{2}, $ then

[Karnataka CET 1996]

Options:

A) $ x+y+z-xyz=0 $

B) $ x+y+z+xyz=0 $

C) $ xy+yz+zx+1=0 $

D) $ xy+yz+zx-1=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Given that $ {{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\frac{\pi }{2} $

$ \Rightarrow {{\tan }^{-1}}[ \frac{x+y+z-xyz}{1-xy-yz-xz} ]=\frac{\pi }{2} $

$ \Rightarrow [ \frac{x+y+z-xyz}{1-xy-yz-zx} ]=\tan \frac{\pi }{2}=\frac{1}{0} $

Hence $ xy+yz+zx-1=0 $ .

Trick : $ x=y=z=\frac{1}{\sqrt{3}}, $

so that $ {{\tan }^{-1}}\frac{1}{\sqrt{3}}+{{\tan }^{-1}}\frac{1}{\sqrt{3}}+{{\tan }^{-1}}\frac{1}{\sqrt{3}}=\frac{\pi }{2} $

Obviously (d) holds for these values of x, y, z.