Inverse Trigonometric Functions Question 196

Question: If $ {{\sin }^{-1}}x+{{\sin }^{-1}}y=\pi /2 $ and $ {{\cos }^{-1}}x-{{\cos }^{-1}}y=0. $ then values x and y are respectively

Options:

A) $ \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}} $

B) $ \frac{1}{2},\frac{1}{2} $

C) $ \frac{1}{2},-\frac{1}{2} $

D) $ \frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: D

Given, $ {{\sin }^{-1}}x+{{\sin }^{-1}}y=\frac{\pi }{2} $ and $ {{\cos }^{-1}}x-{{\cos }^{-1}}y=0 $

$ \Rightarrow ( \frac{\pi }{2}-{{\sin }^{-1}}x )-( \frac{\pi }{2}-{{\sin }^{-1}}y )=0 $

$ \Rightarrow {{\sin }^{-1}}y-{{\sin }^{-1}}x=0\Rightarrow {{\sin }^{-1}}y={{\sin }^{-1}}x $

From equations (i) and (ii), we get $ 2{{\sin }^{-1}}x=\frac{\pi }{2} $

$ \Rightarrow {{\sin }^{-1}}x=\frac{\pi }{4}\Rightarrow x=\frac{1}{\sqrt{2}} $

From equation (ii) $ y=\frac{1}{\sqrt{2}} $