Inverse Trigonometric Functions Question 197

Question: If $ {{\tan }^{-1}}\frac{x-1}{x+2}+{{\tan }^{-1}}\frac{x+1}{x+2}=\frac{\pi }{4} $ , then x =

Options:

A) $ \frac{1}{\sqrt{2}} $

B) $ -\frac{1}{\sqrt{2}} $

C) $ \pm \sqrt{\frac{5}{2}} $

D) $ \pm \frac{1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ {{\tan }^{-1}}\frac{x-1}{x+2}+{{\tan }^{-1}}\frac{x+1}{x+2}=\frac{\pi }{4} $

$ \Rightarrow {{\tan }^{-1}}[ \frac{\frac{x-1}{x+2}+\frac{x+1}{x+2}}{1-( \frac{x-1}{x+2} )( \frac{x+1}{x+2} )} ]=\frac{\pi }{4} $

$ \Rightarrow [ \frac{2x(x+2)}{x^{2}+4+4x-x^{2}+1} ]=\tan \frac{\pi }{4} $

Therefore $ \frac{2x(x+2)}{4x+5}=\tan \frac{\pi }{4}=1 $

$ \Rightarrow 2x^{2}+4x=4x+5 $

$ \Rightarrow x=\pm \sqrt{\frac{5}{2}} $ .