Inverse Trigonometric Functions Question 2

Question: If $ \sin ( {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x )=1 $ ,then x is equal to

[MNR 1994; Kerala (Engg.) 2005]

Options:

A) 1

B) 0

C) $ \frac{4}{5} $

D) $ \frac{1}{5} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x=\frac{\pi }{2} $

$ \therefore {{\sin }^{-1}}\frac{1}{5}=\frac{\pi }{2}-{{\cos }^{-1}}x={{\sin }^{-1}}x $

$ \therefore x=\frac{1}{5} $ .