Inverse Trigonometric Functions Question 2
Question: If $ \sin ( {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x )=1 $ ,then x is equal to
[MNR 1994; Kerala (Engg.) 2005]
Options:
A) 1
B) 0
C) $ \frac{4}{5} $
D) $ \frac{1}{5} $
Show Answer
Answer:
Correct Answer: D
Solution:
$ {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x=\frac{\pi }{2} $
$ \therefore {{\sin }^{-1}}\frac{1}{5}=\frac{\pi }{2}-{{\cos }^{-1}}x={{\sin }^{-1}}x $
$ \therefore x=\frac{1}{5} $ .