Inverse Trigonometric Functions Question 202

Question: If $ {{\tan }^{-1}}2x+{{\tan }^{-1}}3x=\frac{\pi }{4} $ , then x =

[Roorkee 1978, 80; MNR 1986; Pb. CET 2001; Karnataka CET 2002]

Options:

A) - 1

B) $ \frac{1}{6} $

C) $ -1,\frac{1}{6} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{\tan }^{-1}}2x+{{\tan }^{-1}}3x=\frac{\pi }{4} $

$ \Rightarrow {{\tan }^{-1}}( \frac{2x+3x}{1-(2x)(3x)} )=\frac{\pi }{4} $

$ \Rightarrow {{\tan }^{-1}}( \frac{5x}{1-6x^{2}} )={{\tan }^{-1}}(1) $

$ \Rightarrow \frac{5x}{1-6x^{2}}=1 $

$ \Rightarrow 1-6x^{2}=5x $

$ \Rightarrow 6x^{2}+5x-1=0 $

$ \Rightarrow (x+1)( x-\frac{1}{6} )=0 $

$ \Rightarrow x=-1,\frac{1}{6} $ But - 1 does not hold. Trick: Check with the options. Obviously the equation holds for $ x=\frac{1}{6} $ , but not for - 1.