Inverse Trigonometric Functions Question 202

Question: If $ {{\tan }^{-1}}2x+{{\tan }^{-1}}3x=\frac{\pi }{4} $ , then x =

[Roorkee 1978, 80; MNR 1986; Pb. CET 2001; Karnataka CET 2002]

Options:

A) - 1

B) $ \frac{1}{6} $

C) $ -1,\frac{1}{6} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{\tan }^{-1}}2x+{{\tan }^{-1}}3x=\frac{\pi }{4} $

$ \Rightarrow {{\tan }^{-1}}( \frac{2x+3x}{1-(2x)(3x)} )=\frac{\pi }{4} $

$ \Rightarrow {{\tan }^{-1}}( \frac{5x}{1-6x^{2}} )={{\tan }^{-1}}(1) $

$ \Rightarrow \frac{5x}{1-6x^{2}}=1 $

$ \Rightarrow 1-6x^{2}=5x $

$ \Rightarrow 6x^{2}+5x-1=0 $

$ \Rightarrow (x+1)( x-\frac{1}{6} )=0 $

$ \Rightarrow x=-1,\frac{1}{6} $ But - 1 does not hold. Trick: Check with the options. Obviously the equation holds for $ x=\frac{1}{6} $ , but not for - 1.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें