Inverse Trigonometric Functions Question 203

Question: If $ {{\cot }^{-1}}x+{{\tan }^{-1}}3=\frac{\pi }{2} $ , then x =

Options:

A) 1/3

B) 1/4

C) 3

D) 4

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ {{\cot }^{-1}}x+{{\tan }^{-1}}3=\frac{\pi }{2} $

$ \Rightarrow {{\cot }^{-1}}x+{{\tan }^{-1}}3=\frac{\pi }{2}\Rightarrow {{\tan }^{-1}}\frac{1}{x}+{{\tan }^{-1}}3=\frac{\pi }{2} $

$ \Rightarrow {{\tan }^{-1}}( \frac{\frac{1}{x}+3}{1-\frac{1}{x}.3} )={{\tan }^{-1}}( \frac{1}{0} ) $

$ \Rightarrow \frac{3x+1}{x-3}=\frac{1}{0}\Rightarrow x=3 $ Aliter: As we know that, $ {{\tan }^{-1}}x+{{\cot }^{-1}}x=\frac{\pi }{2}, $

Therefore for the given question, x should be 3.