Inverse Trigonometric Functions Question 207

Question: $ {{\tan }^{-1}}x+{{\cot }^{-1}}(x+1)= $

Options:

A) $ {{\tan }^{-1}}(x^{2}+1) $

B) $ {{\tan }^{-1}}(x^{2}+x) $

C) $ {{\tan }^{-1}}(x+1) $

D) $ {{\tan }^{-1}}(x^{2}+x+1) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\tan }^{-1}}x+{{\cot }^{-1}}(x+1)={{\tan }^{-1}}x+{{\tan }^{-1}}( \frac{1}{x+1} ) $

$ ={{\tan }^{-1}}[ \frac{x+\frac{1}{x+1}}{1-\frac{x}{x+1}} ]={{\tan }^{-1}}(x^{2}+x+1) $ .