Inverse Trigonometric Functions Question 209

Question: $ {{\cot }^{-1}}\frac{xy+1}{x-y}+{{\cot }^{-1}}\frac{yz+1}{y-z}+{{\cot }^{-1}}\frac{zx+1}{z-x}= $

Options:

A) 0

B) 1

C) $ {{\cot }^{-1}}x+{{\cot }^{-1}}y+{{\cot }^{-1}}z $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{\cot }^{-1}}\frac{xy+1}{x-y}+{{\cot }^{-1}}\frac{yz+1}{y-z}+{{\cot }^{-1}}\frac{zx+1}{z-x} $

$ ={{\cot }^{-1}}y-{{\cot }^{-1}}x+{{\cot }^{-1}}z-{{\cot }^{-1}}y $

$ +{{\cot }^{-1}}x-{{\cot }^{-1}}z=0 $ . Note: Students should remember this question as a formula.