Inverse Trigonometric Functions Question 21

Question: If $ 2{{\cos }^{-1}}\sqrt{\frac{1+x}{2}}=\frac{\pi }{2}, $ then $ x= $

Options:

A) 1

B) 0

C) -1/2

D) 1/2

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation is $ 2{{\cos }^{-1}}\sqrt{( \frac{1+x}{2} )}=\frac{\pi }{2} $

Therefore $ {{\cos }^{-1}}\sqrt{( \frac{1+x}{2} )}=\frac{\pi }{4}\Rightarrow \cos \frac{\pi }{4}=\frac{\sqrt{1+x}}{\sqrt{2}} $

Therefore $ \frac{1}{\sqrt{2}}=\frac{\sqrt{1+x}}{\sqrt{2}}\Rightarrow 1=\sqrt{1+x}\Rightarrow x=0 $ .