Inverse Trigonometric Functions Question 216

Question: If $ {{\tan }^{-1}}\frac{a+x}{a}+{{\tan }^{-1}}\frac{a-x}{a}=\frac{\pi }{6} $ ,then $ x^{2} $ =

Options:

A) $ 2\sqrt{3}a $

B) $ \sqrt{3}a $

C) $ 2\sqrt{3}a^{2} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Given equation is $ {{\tan }^{-1}}\frac{a+x}{a}+{{\tan }^{-1}}\frac{a-x}{a}=\frac{\pi }{6} $

$ \Rightarrow {{\tan }^{-1}}( \frac{\frac{a+x}{a}+\frac{a-x}{a}}{1-\frac{a+x}{a}.\frac{a-x}{a}} )=\frac{\pi }{6} $

$ \Rightarrow \frac{2a^{2}}{x^{2}}=\tan \frac{\pi }{6}=\frac{1}{\sqrt{3}}\Rightarrow x^{2}=2\sqrt{3}a^{2} $ .