Inverse Trigonometric Functions Question 22

Question: $ \tan [ \frac{1}{2}{{\cos }^{-1}}( \frac{\sqrt{5}}{3} ) ]= $

[Roorkee 1986]

Options:

A) $ \frac{3-\sqrt{5}}{2} $

B) $ \frac{3+\sqrt{5}}{2} $

C) $ \frac{2}{3-\sqrt{5}} $

D) $ \frac{2}{3+\sqrt{5}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \tan [ \frac{1}{2}{{\cos }^{-1}}( \frac{\sqrt{5}}{3} ) ] $ Let $ \frac{1}{2}{{\cos }^{-1}}\frac{\sqrt{5}}{3}=\theta \Rightarrow \cos 2\theta =\frac{\sqrt{5}}{3} $ But $ \cos 2\theta =\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\Rightarrow \frac{\sqrt{5}}{3}=\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $

Therefore $ \sqrt{5}+\sqrt{5}{{\tan }^{2}}\theta =3-3{{\tan }^{2}}\theta $

Therefore $ (\sqrt{5}+3){{\tan }^{2}}\theta =3-\sqrt{5}\Rightarrow {{\tan }^{2}}\theta =\frac{3-\sqrt{5}}{3+\sqrt{5}} $

Therefore $ {{\tan }^{2}}\theta =\frac{{{(3-\sqrt{5})}^{2}}}{4}\Rightarrow \tan \theta =\frac{3-\sqrt{5}}{2} $ On rationalising

Therefore $ \tan \theta =\frac{3-\sqrt{5}}{2}\times \frac{3+\sqrt{5}}{3+\sqrt{5}}=\frac{2}{3+\sqrt{5}} $ .