Inverse Trigonometric Functions Question 220

Question: If $ a{{\sin }^{-1}}x-b{{\cos }^{-1}}x=c, $ then $ a{{\sin }^{-1}}x+b{{\cos }^{-1}}x $ is equal to

Options:

A) 0

B) $ \frac{\pi ab+c(b-c)}{a+b} $

C) $ \frac{\pi }{2} $

D) $ \frac{\pi ab+c(a-b)}{a+b} $

Show Answer

Answer:

Correct Answer: D

$ a{{\sin }^{-1}}x-b{{\cos }^{-1}}x=c $

We have b $ {{\sin }^{-1}}x+b{{\cos }^{-1}}x=\frac{b\pi }{2} $ Adding $ (a+b) $

$ {{\sin }^{-1}}x=\frac{b\pi }{2}+c $

Or $ {{\sin }^{-1}}x=\frac{( \frac{b\pi }{2} )+c}{a+b}=\frac{b\pi +2c}{2(a+b)} $

$ \therefore {{\cos }^{-1}}x=\frac{\pi }{2}-\frac{b\pi +2c}{2(a+b)}=\frac{\pi a-2c}{2(a+b)} $

$ \Rightarrow a{{\sin }^{-1}}x+b{{\cos }^{1}}x=\frac{\pi ab+c(a-b)}{a+b} $