Inverse Trigonometric Functions Question 221

Question: The value of $ \sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x $ is equal to

[Bihar CEE 1974]

Options:

A) x

B) $ \frac{\pi }{2} $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ {{\cos }^{-1}}x=\theta \Rightarrow x=\cos \theta \Rightarrow \sec \theta =\frac{1}{x} $

$ \Rightarrow \tan \theta =\sqrt{{{\sec }^{2}}\theta -1}=\sqrt{\frac{1}{x^{2}}-1}=\frac{1}{x}\sqrt{1-x^{2}} $

Now $ \sin {{\cot }^{-1}}\tan \theta =\sin {{\cot }^{-1}}( \frac{1}{x}\sqrt{1-x^{2}} ) $

Again, putting $ x=\sin \theta $

$ \sin {{\cot }^{-1}}( \frac{1}{x}\sqrt{1-x^{2}} )=\sin {{\cot }^{-1}}( \frac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta } ) $

$ =\sin {{\cot }^{-1}}(\cot \theta )=\sin \theta =x $ .