Inverse Trigonometric Functions Question 224

Question: If $ {{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\pi $ , then $ x+y+z $ is equal to

[Kerala (Engg.) 2002]

Options:

A) xyz

B) 0

C) 1

D) 2xyz

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\pi $

Therefore $ {{\tan }^{-1}}[ \frac{x+y+z-xyz}{1-xy-yz-zx} ]=\pi $

Therefore $ x+y+z-xyz=0 $

Therefore $ x+y+z=xyz $ .