Inverse Trigonometric Functions Question 228

Question: If $ {{\tan }^{-1}}x+2{{\cot }^{-1}}x=\frac{2\pi }{3}, $ then x =

[Karnataka CET 1999]

Options:

A) $ \sqrt{2} $

B) 3

C) $ \sqrt{3} $

D) $ \frac{\sqrt{3}-1}{\sqrt{3}+1} $

Show Answer

Answer:

Correct Answer: C

Solution:

The given equation may be written as $ {{\tan }^{-1}}x+{{\cot }^{-1}}x+{{\cot }^{-1}}x=\frac{2\pi }{3} $

Therefore $ {{\cot }^{-1}}x=\frac{2\pi }{3}-\frac{\pi }{2} $ = $ \frac{\pi }{6} $

Therefore $ x=\sqrt{3} $ .