Inverse Trigonometric Functions Question 23

Question: $ \frac{1}{2}{{\cos }^{-1}}( \frac{1-x}{1+x} )= $

Options:

A) $ {{\cot }^{-1}}\sqrt{x} $

B) $ {{\tan }^{-1}}\sqrt{x} $

C) $ {{\tan }^{-1}}x $

D) $ {{\cot }^{-1}}x $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ x={{\tan }^{2}}\theta \Rightarrow \theta ={{\tan }^{-1}}\sqrt{x} $ Now, $ \frac{1}{2}{{\cos }^{-1}}( \frac{1-x}{1+x} ) $

$ =\frac{1}{2}{{\cos }^{-1}}( \frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } ) $

$ =\frac{1}{2}{{\cos }^{-1}}\cos 2\theta =\frac{2\theta }{2}=\theta ={{\tan }^{-1}}\sqrt{x} $ .