Inverse Trigonometric Functions Question 233

Question: $ \theta ={{\tan }^{-1}}(2tan^{2}\theta )-ta{n^{-1}}( \frac{1}{3}\tan \theta ) $ then $ \tan \theta = $

Options:

A) $ -2 $

B) $ -1 $

C) $ 2/3 $

D) $ 2 $

Show Answer

Answer:

Correct Answer: A

$ \theta ={{\tan }^{-1}}[ \frac{2{{\tan }^{2}}\theta -\frac{1}{3}\tan \theta }{1+\frac{2}{3}{{\tan }^{3}}\theta } ] $

$ \Rightarrow \tan \theta =\frac{6{{\tan }^{2}}\theta -\tan \theta }{3+2{{\tan }^{3}}\theta }\Rightarrow 1=\frac{6\tan \theta -1}{3+2{{\tan }^{3}}\theta } $

Or $ \tan \theta =0 $

$ \Rightarrow 2{{\tan }^{3}}\theta -6\tan \theta +4=0 $

$ \Rightarrow {{(tan\theta -1)}^{2}}(tan\theta +2)=0 $

$ \Rightarrow \tan \theta =1;\tan \theta =-2;\tan \theta =0. $