Inverse Trigonometric Functions Question 235

Question: If $ 4{{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi , $ then $ x $ is equal to

[UPSEAT 2001]

Options:

A) 0

B) $ \frac{1}{2} $

C) $ -\frac{\sqrt{3}}{2} $

D) $ \frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

We know that $ 4{{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi $

Therefore $ 3{{\sin }^{-1}}x+{{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi $

Therefore $ 3{{\sin }^{-1}}x=\pi -\frac{\pi }{2}=\frac{\pi }{2} $

Therefore $ {{\sin }^{-1}}x=\pi /6 $

Therefore $ x=\sin \frac{\pi }{6}=\frac{1}{2} $ .