Inverse Trigonometric Functions Question 236

Question: If $ {{\sin }^{-1}}\frac{3}{5}+{{\cos }^{-1}}( \frac{12}{13} )={{\sin }^{-1}}C, $ then C =

[Pb. CET 1999]

Options:

A) $ \frac{65}{56} $

B) $ \frac{24}{65} $

C) $ \frac{16}{65} $

D) $ \frac{56}{65} $

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ {{\sin }^{-1}}C={{\sin }^{-1}}\frac{3}{5}+{{\cos }^{-1}}\frac{12}{13} $

$ \Rightarrow C=\sin ( {{\sin }^{-1}}\frac{3}{5}+{{\cos }^{-1}}\frac{12}{13} ) $ using, $ \sin (A+B)=\sin A\cos B+\cos A\sin B $

$ \Rightarrow C=\frac{3}{5}\times \frac{12}{13}+\sqrt{1-\frac{9}{25}}\sqrt{1-\frac{144}{169}} $

$ \Rightarrow C=\frac{56}{65} $ .