Inverse Trigonometric Functions Question 237

Question: $ \sin { {{\tan }^{-1}}( \frac{1-x^{2}}{2x} )+{{\cos }^{-1}}( \frac{1-x^{2}}{1+x^{2}} ) } $ is equal to

[Kurukshetra CEE 2001]

Options:

A) 0

B) 1

C) $ \sqrt{2} $

D) $ \frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \sin [ {{\tan }^{-1}}( \frac{1-x^{2}}{2x} )+{{\cos }^{-1}}( \frac{1-x^{2}}{1+x^{2}} ) ] $

Putting $ x=\tan \theta $

we get, $ \sin [ {{\tan }^{-1}}( \frac{1-{{\tan }^{2}}\theta }{2\tan \theta } )+{{\cos }^{-1}}( \frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } ) ] $ = $ \sin [{{\tan }^{-1}}(\cot 2\theta )+{{\cos }^{-1}}(\cos 2\theta )] $

= $ \sin [{{\tan }^{-1}}\tan (\pi /2-2\theta )+{{\cos }^{-1}}\cos 2\theta ] $ = $ \sin \frac{\pi }{2}=1 $ .