Inverse Trigonometric Functions Question 238

Question: $ 2{{\tan }^{-1}}[ \sqrt{\frac{a-b}{a+b}}\tan \frac{\theta }{2} ]= $ [Dhanbad Engg. 1976]

Options:

A) $ {{\cos }^{-1}}( \frac{a\cos \theta +b}{a+b\cos \theta } ) $

B) $ {{\cos }^{-1}}( \frac{a+b\cos \theta }{a\cos \theta +b} ) $

C) $ {{\cos }^{-1}}( \frac{a\cos \theta }{a+b\cos \theta } ) $

D) $ {{\cos }^{-1}}( \frac{a\cos +b\theta }{a+b\cos \theta } ) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ 2{{\tan }^{-1}}[ \sqrt{\frac{a-b}{a+b}}\tan \frac{\theta }{2} ] $

$ ={{\cos }^{-1}}[ \frac{1-( \frac{a-b}{a+b} ){{\tan }^{2}}\frac{\theta }{2}}{1+( \frac{a-b}{a+b} ){{\tan }^{2}}\frac{\theta }{2}} ] $

$ ( \because 2{{\tan }^{-1}}x={{\cos }^{-1}}\frac{1-x^{2}}{1+x^{2}} ) $

$ ={{\cos }^{-1}}[ \frac{(a+b)-(a-b){{\tan }^{2}}\frac{\theta }{2}}{(a+b)+(a-b){{\tan }^{2}}\frac{\theta }{2}} ] $

$ ={{\cos }^{-1}}[ \frac{a( 1-{{\tan }^{2}}\frac{\theta }{2} )+b( 1+{{\tan }^{2}}\frac{\theta }{2} )}{a( 1+{{\tan }^{2}}\frac{\theta }{2} )+b( 1-{{\tan }^{2}}\frac{\theta }{2} )} ] $

$ ={{\cos }^{-1}}[ \frac{\frac{a( 1-{{\tan }^{2}}\frac{\theta }{2} )}{1+{{\tan }^{2}}\frac{\theta }{2}}+b}{a+b( \frac{1-{{\tan }^{2}}\frac{\theta }{2}}{1+{{\tan }^{2}}\frac{\theta }{2}} )} ]={{\cos }^{-1}}[ \frac{a\cos \theta +b}{a+b\cos \theta } ] $ .