Inverse Trigonometric Functions Question 24

Question: If $ {{\sin }^{-1}}\frac{1}{3}+{{\sin }^{-1}}\frac{2}{3}={{\sin }^{-1}}x, $ then x is equal to

[Roorkee 1995]

Options:

A) 0

B) $ \frac{\sqrt{5}-4\sqrt{2}}{9} $

C) $ \frac{\sqrt{5}+4\sqrt{2}}{9} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\sin }^{-1}}\frac{1}{3}+{{\sin }^{-1}}\frac{2}{3} $

$ ={{\sin }^{-1}}[ \frac{1}{3}\sqrt{1-\frac{4}{9}}+\frac{2}{3}\sqrt{1-\frac{1}{9}} ]={{\sin }^{-1}}[ \frac{\sqrt{5}+4\sqrt{2}}{9} ] $

Therefore $ x=\frac{\sqrt{5}+4\sqrt{2}}{9} $ .