Inverse Trigonometric Functions Question 26

Question: $ 3{{\tan }^{-1}}a $ is equal to

[MP PET 1993]

Options:

A) $ {{\tan }^{-1}}\frac{3a+a^{3}}{1+3a^{2}} $

B) $ {{\tan }^{-1}}\frac{3a-a^{3}}{1+3a^{2}} $

C) $ {{\tan }^{-1}}\frac{3a+a^{3}}{1-3a^{2}} $

D) $ {{\tan }^{-1}}\frac{3a-a^{3}}{1-3a^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

It is obvious.

$ 3{{\tan }^{-1}}a $ is equal to $ {{\tan }^{-1}}\frac{3a-a^{3}}{1-3a^{2}} $