Inverse Trigonometric Functions Question 28

Question: $ 4{{\tan }^{-1}}\frac{1}{5}-{{\tan }^{-1}}\frac{1}{239} $ is equal to

[MNR 1995]

Options:

A) $ \pi $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

Since $ 2{{\tan }^{-1}}x={{\tan }^{-1}}\frac{2x}{1-x^{2}} $ \ $ 4{{\tan }^{-1}}\frac{1}{5}=2[ 2{{\tan }^{-1}}\frac{1}{5} ]=2{{\tan }^{-1}}\frac{\frac{2}{5}}{1-\frac{1}{25}} $

$ =2{{\tan }^{-1}}\frac{10}{24}={{\tan }^{-1}}\frac{\frac{20}{24}}{1-\frac{100}{576}}={{\tan }^{-1}}\frac{120}{119} $ So, $ 4{{\tan }^{-1}}\frac{1}{5}-{{\tan }^{-1}}\frac{1}{239}={{\tan }^{-1}}\frac{120}{119}-{{\tan }^{-1}}\frac{1}{239} $

$ ={{\tan }^{-1}}\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}.\frac{1}{239}}={{\tan }^{-1}}\frac{(120\times 239)-119}{(119\times 239)+120} $

Therefore $ {{\tan }^{-1}}1=\frac{\pi }{4} $ .