Inverse Trigonometric Functions Question 30

Question: If $ {{\tan }^{-1}}(x-1)+{{\tan }^{-1}}x+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}3x $ ,then x =

Options:

A) $ \pm \frac{1}{2} $

B) $ 0,\frac{1}{2} $

C) $ 0,-\frac{1}{2} $

D) $ 0,\pm \frac{1}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)+{{\tan }^{-1}}(x+1)={{\tan }^{-1}}3x $

$ \Rightarrow {{\tan }^{-1}}(x-1)+{{\tan }^{-1}}(x)={{\tan }^{-1}}3x-{{\tan }^{-1}}(x+1) $

$ \Rightarrow {{\tan }^{-1}}[ \frac{(x-1)+x}{1-(x-1)(x)} ]={{\tan }^{-1}}[ \frac{3x-(x+1)}{1+3x(x+1)} ] $

$ \Rightarrow \frac{2x-1}{1-x^{2}+x}=\frac{2x-1}{1+3x^{2}+3x} $

$ \Rightarrow (1-x^{2}+x)(2x-1)=(1+3x^{2}+3x)(2x-1) $

On simplification $ x=0,\pm \frac{1}{2}. $