Inverse Trigonometric Functions Question 31

Question: If $ 3{{\sin }^{-1}}\frac{2x}{1-x^{2}}-4{{\cos }^{-1}}\frac{1-x^{2}}{1+x^{2}}+2{{\tan }^{-1}}\frac{2x}{1-x^{2}}=\frac{\pi }{3} $ then $ x $ =

Options:

A) $ \sqrt{3} $

B) $ \frac{1}{\sqrt{3}} $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ 3{{\sin }^{-1}}\frac{2x}{1+x^{2}}-4{{\cos }^{-1}}\frac{1-x^{2}}{1+x^{2}}+2{{\tan }^{-1}}\frac{2x}{1-x^{2}}=\frac{\pi }{3} $

Putting $ x=\tan \theta $

$ 3{{\sin }^{-1}}( \frac{2\tan \theta }{1+{{\tan }^{2}}\theta } )-4{{\cos }^{-1}}( \frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } ) $ $ +2{{\tan }^{-1}}( \frac{2\tan \theta }{1-{{\tan }^{2}}\theta } )=\frac{\pi }{3} $

Therefore $ 3{{\sin }^{-1}}(\sin 2\theta )-4{{\cos }^{-1}}(\cos 2\theta ) $ $ +2{{\tan }^{-1}}(\tan 2\theta )=\frac{\pi }{3} $

Therefore $ 3(2\theta )-4(2\theta )+2(2\theta )=\frac{\pi }{3}\Rightarrow 6\theta -8\theta +4\theta =\frac{\pi }{3} $

Therefore $ \theta =\frac{\pi }{6}\Rightarrow {{\tan }^{-1}}x=\frac{\pi }{6}\Rightarrow x=\tan \frac{\pi }{6}=\frac{1}{\sqrt{3}} $