Inverse Trigonometric Functions Question 39

Question: If $ {{\sin }^{-1}}(1-x)-2{{\sin }^{-1}}x=\pi /2 $ , then x equals

[Orissa JEE 2005]

Options:

A) $ ( 0,-\frac{1}{2} ) $

B) $ ( \frac{1}{2},0 ) $

C) {0}

D) (-1, 0)

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\sin }^{-1}}(1-x)-2{{\sin }^{-1}}x=\frac{\pi }{2} $

Therefore $ {{\sin }^{-1}}(1-x)=( \frac{\pi }{2}-2{{\sin }^{-1}}x ) $

Therefore $ 1-x=\sin ( \frac{\pi }{2}-2{{\sin }^{-1}}x ) $

Therefore $ 1-x=\sin \frac{\pi }{2}\cos (2{{\sin }^{-1}}x)-\cos \frac{\pi }{2}\sin (2{{\sin }^{-1}}x) $

Therefore $ 1-x=\cos {{(2{{\sin }^{-1}}x)}^{2}} $

Therefore $ 1-x=\cos {{\cos }^{-1}}(1-2x $

Therefore $ 2x^{2}-x=0 $

$ x=0 $ , $ x=1/2 $ which does not satisfy the equation \ $ x=0 $ is only the solution.