Inverse Trigonometric Functions Question 4

Question: Total number of positive integral value ?n? so that the equations $ {{\cos }^{-1}}x+{{(si{n^{-1}}y)}^{2}}=\frac{n{{\pi }^{2}}}{4} $ and $ {{(si{n^{-1}}y)}^{2}}-{{\cos }^{-1}}x=\frac{{{\pi }^{2}}}{16} $ are consistent, is equal to

Options:

A) 1

B) 4

C) 3

D) 2

Show Answer

Answer:

Correct Answer: A

We have, $ 2{{(si{n^{-1}}y)}^{2}}=\frac{4n+1}{16}{{\pi }^{2}} $

$ \Rightarrow 0\le \frac{4n+1}{32}{{\pi }^{2}}\le \frac{{{\pi }^{2}}}{4} $

Also, $ 2(co{s^{-1}}x)=\frac{4n-1}{16}{{\pi }^{2}}\Rightarrow -\frac{1}{4}\le n\le \frac{7}{4} $

Also, $ 2(co{s^{-1}}x)=\frac{4n-1}{16}{{\pi }^{2}} $

$ \Rightarrow 0\le \frac{4n-1}{32}{{\pi }^{2}}\le \pi \Rightarrow \frac{1}{4}\le n\le \frac{8}{\pi }+\frac{1}{4}\Rightarrow n=1 $