Inverse Trigonometric Functions Question 40

Question: If $ \angle A=90^{o} $ in the triangle ABC, then $ {{\tan }^{-1}}( \frac{c}{a+b} )+{{\tan }^{-1}}( \frac{b}{a+c} )= $

[Kerala (Engg.) 2005]

Options:

A) 0

B) 1

C) $ \pi /4 $

D) $ \pi /6 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \angle A=90^{o} $

$ {{\tan }^{-1}}( \frac{c}{a+b} )+{{\tan }^{-1}}( \frac{b}{a+c} ) $

$ ={{\tan }^{-1}}[ \frac{\frac{c}{a+b}+\frac{b}{a+c}}{1-( \frac{c}{a+b} )( \frac{b}{a+c} )} ] $

$ ={{\tan }^{-1}}[ \frac{ca+c^{2}+ab+b^{2}}{a^{2}+ab+ca+bc-bc} ] $

$ ={{\tan }^{-1}}[ \frac{a^{2}+ab+ca}{a^{2}+ab+ca} ] $

$ ={{\tan }^{-1}}(1)=\frac{\pi }{4} $ .