Inverse Trigonometric Functions Question 42

Question: If $ \alpha \in ( -\frac{3\pi }{2},-\pi ) $ then the value of $ {{\tan }^{-1}}(cot\alpha ) $ - $ {{\cot }^{-1}}(tan\alpha )+si{n^{-1}}(sin\alpha )+co{s^{-1}}(cos\alpha ) $ is equal to

Options:

A) $ 2\pi +a $

B) $ \pi +a $

C) 0

D) $ \pi -a $

Show Answer

Answer:

Correct Answer: C

For $ \alpha \in ( -\frac{3\pi }{2},-\pi ),\tan \alpha <0 $

$ \Rightarrow {{\tan }^{-1}}(cot\alpha )-co{t^{-1}}(tan\alpha )\times $

$ {{\tan }^{-1}}(cot\alpha )-[ \frac{\pi }{2}-{{\tan }^{-1}}(tan\alpha ) ] $

$ ={{\tan }^{-1}}(cot\alpha )+{{\tan }^{-1}}(tan\alpha )-\frac{\pi }{2} $

$ =-\pi $ Also for points in the second quadrant, we have $ {{\sin }^{-1}}(\sin \alpha )+{{\cos }^{-1}}(cos\alpha )=\pi $