Inverse Trigonometric Functions Question 44

Question: The solution of $ {{\sin }^{-1}}x-{{\sin }^{-1}}2x=\pm \frac{\pi }{3} $ is

[Karnataka CET 2005]

Options:

A) $ \pm \frac{1}{3} $

B) $ \pm \frac{1}{4} $

C) $ \pm \frac{\sqrt{3}}{2} $

D) $ \pm \frac{1}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\sin }^{-1}}2x={{\sin }^{-1}}x-{{\sin }^{-1}}\frac{\sqrt{3}}{2} $

$ {{\sin }^{-1}}2x={{\sin }^{-1}}( x\sqrt{( 1-\frac{3}{4} )}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} ) $

$ 2x=( \frac{x}{2}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} ) $

$ \frac{\sqrt{3}}{2}\sqrt{1-x^{2}}=\frac{x}{2}-2x=\frac{-3x}{2} $

$ \frac{3(1-x^{2})}{4}=\frac{9x^{2}}{4} $

$ \Rightarrow 3-3x^{2}=9x^{2} $

Therefore $ x^{2}=\frac{1}{4}\Rightarrow x=\pm \frac{1}{2} $ .